Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker?

Identifieur interne : 002729 ( Main/Exploration ); précédent : 002728; suivant : 002730

Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker?

Auteurs : Karen K. Christensen-Dalsgaard [Canada] ; Melvin T. Tyree

Source :

RBID : pubmed:23624704

Descripteurs français

English descriptors

Abstract

Frost damage to the xylem conduits of trees is a phenomenon of eco-physiological importance. It is often documented in terms of the percentage loss of conductivity (PLC), an indicator of air filling of the conduits. However, trees that refill their conduits in spring could be impacted more by damage to the conduits that reduce cavitation resistance, making them more susceptible to future drought events. We investigated whether ice formation, dynamic flexing of frozen branches or freeze-thaw events could reduce the cavitation resistance (cause "frost fatigue") in first-year shoots of apple (Malus domestica) and clonal hybrid cottonwood (Walker). Frost fatigue was measured in terms of P50 (the negative xylem pressure required to cause a 50 % loss of conductivity). All treatment groups showed significant frost fatigue, with the exception of the pre-flushed, constantly frozen poplar branches. The P50 following freeze treatments was approximately 50 % of the pre-freeze values. The effect tended to be greater in freeze-thawed branches. Dynamic bending of the branches had no effect on either PLC or P50. In three out of four cases, there was a significant correlation between P50 and PLC. Frost fatigue occurred in both apple and poplar, two unrelated species with different drought and frost tolerances, suggesting that it may be a widespread phenomenon that could impact the ecophysiology of temperate forests.

DOI: 10.1007/s00442-013-2656-1
PubMed: 23624704


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker?</title>
<author>
<name sortKey="Christensen Dalsgaard, Karen K" sort="Christensen Dalsgaard, Karen K" uniqKey="Christensen Dalsgaard K" first="Karen K" last="Christensen-Dalsgaard">Karen K. Christensen-Dalsgaard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, 4-44 ESB, University of Alberta, Edmonton, AB, T6G 2E3, Canada, kkcdalsgaard@yahoo.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Department of Renewable Resources, 4-44 ESB, University of Alberta, Edmonton, AB, T6G 2E3, Canada</wicri:regionArea>
<wicri:noRegion>Canada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tyree, Melvin T" sort="Tyree, Melvin T" uniqKey="Tyree M" first="Melvin T" last="Tyree">Melvin T. Tyree</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23624704</idno>
<idno type="pmid">23624704</idno>
<idno type="doi">10.1007/s00442-013-2656-1</idno>
<idno type="wicri:Area/Main/Corpus">002619</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002619</idno>
<idno type="wicri:Area/Main/Curation">002619</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002619</idno>
<idno type="wicri:Area/Main/Exploration">002619</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker?</title>
<author>
<name sortKey="Christensen Dalsgaard, Karen K" sort="Christensen Dalsgaard, Karen K" uniqKey="Christensen Dalsgaard K" first="Karen K" last="Christensen-Dalsgaard">Karen K. Christensen-Dalsgaard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, 4-44 ESB, University of Alberta, Edmonton, AB, T6G 2E3, Canada, kkcdalsgaard@yahoo.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Department of Renewable Resources, 4-44 ESB, University of Alberta, Edmonton, AB, T6G 2E3, Canada</wicri:regionArea>
<wicri:noRegion>Canada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tyree, Melvin T" sort="Tyree, Melvin T" uniqKey="Tyree M" first="Melvin T" last="Tyree">Melvin T. Tyree</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena (MeSH)</term>
<term>Disease Resistance (physiology)</term>
<term>Freezing (adverse effects)</term>
<term>Malus (physiology)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Stems (physiology)</term>
<term>Populus (physiology)</term>
<term>Species Specificity (MeSH)</term>
<term>Statistics, Nonparametric (MeSH)</term>
<term>Xylem (anatomy & histology)</term>
<term>Xylem (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Congélation (effets indésirables)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Malus (physiologie)</term>
<term>Phénomènes biomécaniques (MeSH)</term>
<term>Populus (physiologie)</term>
<term>Résistance à la maladie (physiologie)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Statistique non paramétrique (MeSH)</term>
<term>Tiges de plante (physiologie)</term>
<term>Xylème (anatomie et histologie)</term>
<term>Xylème (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="adverse effects" xml:lang="en">
<term>Freezing</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Congélation</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Malus</term>
<term>Populus</term>
<term>Résistance à la maladie</term>
<term>Tiges de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Disease Resistance</term>
<term>Malus</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Species Specificity</term>
<term>Statistics, Nonparametric</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phénomènes biomécaniques</term>
<term>Spécificité d'espèce</term>
<term>Statistique non paramétrique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Frost damage to the xylem conduits of trees is a phenomenon of eco-physiological importance. It is often documented in terms of the percentage loss of conductivity (PLC), an indicator of air filling of the conduits. However, trees that refill their conduits in spring could be impacted more by damage to the conduits that reduce cavitation resistance, making them more susceptible to future drought events. We investigated whether ice formation, dynamic flexing of frozen branches or freeze-thaw events could reduce the cavitation resistance (cause "frost fatigue") in first-year shoots of apple (Malus domestica) and clonal hybrid cottonwood (Walker). Frost fatigue was measured in terms of P50 (the negative xylem pressure required to cause a 50 % loss of conductivity). All treatment groups showed significant frost fatigue, with the exception of the pre-flushed, constantly frozen poplar branches. The P50 following freeze treatments was approximately 50 % of the pre-freeze values. The effect tended to be greater in freeze-thawed branches. Dynamic bending of the branches had no effect on either PLC or P50. In three out of four cases, there was a significant correlation between P50 and PLC. Frost fatigue occurred in both apple and poplar, two unrelated species with different drought and frost tolerances, suggesting that it may be a widespread phenomenon that could impact the ecophysiology of temperate forests.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23624704</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>173</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker?</ArticleTitle>
<Pagination>
<MedlinePgn>665-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-013-2656-1</ELocationID>
<Abstract>
<AbstractText>Frost damage to the xylem conduits of trees is a phenomenon of eco-physiological importance. It is often documented in terms of the percentage loss of conductivity (PLC), an indicator of air filling of the conduits. However, trees that refill their conduits in spring could be impacted more by damage to the conduits that reduce cavitation resistance, making them more susceptible to future drought events. We investigated whether ice formation, dynamic flexing of frozen branches or freeze-thaw events could reduce the cavitation resistance (cause "frost fatigue") in first-year shoots of apple (Malus domestica) and clonal hybrid cottonwood (Walker). Frost fatigue was measured in terms of P50 (the negative xylem pressure required to cause a 50 % loss of conductivity). All treatment groups showed significant frost fatigue, with the exception of the pre-flushed, constantly frozen poplar branches. The P50 following freeze treatments was approximately 50 % of the pre-freeze values. The effect tended to be greater in freeze-thawed branches. Dynamic bending of the branches had no effect on either PLC or P50. In three out of four cases, there was a significant correlation between P50 and PLC. Frost fatigue occurred in both apple and poplar, two unrelated species with different drought and frost tolerances, suggesting that it may be a widespread phenomenon that could impact the ecophysiology of temperate forests.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Christensen-Dalsgaard</LastName>
<ForeName>Karen K</ForeName>
<Initials>KK</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, 4-44 ESB, University of Alberta, Edmonton, AB, T6G 2E3, Canada, kkcdalsgaard@yahoo.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tyree</LastName>
<ForeName>Melvin T</ForeName>
<Initials>MT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005615" MajorTopicYN="N">Freezing</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027845" MajorTopicYN="N">Malus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018709" MajorTopicYN="N">Statistics, Nonparametric</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23624704</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-013-2656-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Planta. 2003 Jul;217(3):436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14520570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(3):610-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17953543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):713-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Dec;109 (1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Oct;100(2):605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Dec;27(12):1761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Jul;23(10):663-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jul;33(7):1059-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Dec;22(17):1211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Sep;23(13):907-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Dec;87(12):3175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17249241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1999 Oct;86(10):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Jan;80(1):110-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Aug;34(8):1276-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Jun;23(9):615-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 9;291(5506):1059-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Jan;21(1):27-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11260821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Mar;105(4):435-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jul;55(402):1569-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15181107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Oct;143(2):154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Nov;52(364):2135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):374-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Tyree, Melvin T" sort="Tyree, Melvin T" uniqKey="Tyree M" first="Melvin T" last="Tyree">Melvin T. Tyree</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Christensen Dalsgaard, Karen K" sort="Christensen Dalsgaard, Karen K" uniqKey="Christensen Dalsgaard K" first="Karen K" last="Christensen-Dalsgaard">Karen K. Christensen-Dalsgaard</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002729 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002729 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23624704
   |texte=   Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23624704" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020